JKT48

Go to Blogger edit html and find these sentences.Now replace these sentences with your own descriptions.

This is default featured slide 4 title

Go to Blogger edit html and find these sentences.Now replace these sentences with your own descriptions.

This is default featured slide 5 title

Go to Blogger edit html and find these sentences.Now replace these sentences with your own descriptions.

Thursday, 20 November 2014

Kapasitor

Kondensator atau sering disebut sebagai kapasitor adalah suatu alat yang dapat menyimpan energi di dalam medan listrik, dengan cara mengumpulkan ketidakseimbangan internal dari muatan listrik. Kondensator memiliki satuan yang disebut Farad dari nama Michael Faraday. Kondensator juga dikenal sebagai "kapasitor", namun kata "kondensator" masih dipakai hingga saat ini. Pertama disebut oleh Alessandro Volta seorang ilmuwan Italia pada tahun 1782 (dari bahasa Itali condensatore), berkenaan dengan kemampuan alat untuk menyimpan suatu muatan listrik yang tinggi dibanding komponen lainnya. Kebanyakan bahasa dan negara yang tidak menggunakan bahasa Inggris masih mengacu pada perkataan bahasa Italia "condensatore", bahasa Perancis condensateur, Indonesia dan Jerman Kondensator atau Spanyol Condensador.
  • Kondensator diidentikkan mempunyai dua kaki dan dua kutub yaitu positif dan negatif serta memiliki cairan elektrolit dan biasanya berbentuk tabung.
Polarized kondensator symbol 3.jpg Lambang kondensator (mempunyai kutub) pada skema elektronika.
  • Sedangkan jenis yang satunya lagi kebanyakan nilai kapasitasnya lebih rendah, tidak mempunyai kutub positif atau negatif pada kakinya, kebanyakan berbentuk bulat pipih berwarna coklat, merah, hijau dan lainnya seperti tablet atau kancing baju.
Capacitor symbol.jpg Lambang kapasitor (tidak mempunyai kutub) pada skema elektronika.
Namun kebiasaan dan kondisi serta artikulasi bahasa setiap negara tergantung pada masyarakat yang lebih sering menyebutkannya. Kini kebiasaan orang tersebut hanya menyebutkan salah satu nama yang paling dominan digunakan atau lebih sering didengar. Pada masa kini, kondensator sering disebut kapasitor (capacitor) ataupun sebaliknya yang pada ilmu elektronika disingkat dengan huruf (C).

Kapasitor dalam rangkaian elektronik

Kapasitansi

Satuan dari kapasitansi kondensator adalah Farad (F). Namun Farad adalah satuan yang terlalu besar, sehingga digunakan:
  • Pikofarad (pF) = 1\times10^{-12}\,F
  • Nanofarad (nF) = 1\times10^{-9}\,F
  • Microfarad (\mu\,F) = 1\times10^{-6}\,F
Kapasitansi dari kondensator dapat ditentukan dengan rumus:
C=\epsilon_0\epsilon_r\frac{A}{d}
C : Kapasitansi
\epsilon_0 : permitivitas hampa
\epsilon_r : permitivitas relatif
A : luas pelat
d :jarak antar pelat/tebal dielektrik
Adapun cara memperbesar kapasitansi kapasitor atau kondensator dengan jalan:
  1. Menyusunnya berlapis-lapis.
  2. Memperluas permukaan variabel.
  3. Memakai bahan dengan daya tembus besar.
Permitivitas Relatif Dielektrik






















Wujud dan Macam kondensator

Karakteristik kondensator
Tipe Jangkauan Toleransi (%) Tegangan AC lazim (V) Tegangan DC lazim (V) Koefisien suhu (ppm/C) Frekuensi pancung f_R (MHz) Sudut rugi (\tan\;\delta) Resistansi bocoran (\Omega) Stabilitas
Kertas 10 nF - 10 uF ± 10% 500 V 600 V 300 ppm/C 0,1 MHz 0,01 109 \Omega lumayan
Mika perak 5 pF - 10 nF ± 0,5% - 400 V 100 ppm/C 10 MHz 0,0005 1011 \Omega Baik sekali
Keramik 5 pF - 1 uF ± 10% 250 V 400 V 30 ppm/C 10 MHz 0,01 108 \Omega Baik
Polystyrene 50 pF - 500 nF ± 1% 150 V 500 V -150 ppm/C 10 MHz 0,0005 1012 \Omega Baik sekali
Polyester 100 pF - 2 uF ± 5% 400 V 400 V 400 ppm/C 1 MHz 0,001 1011 \Omega Cukup
Polypropylene 1 nF - 100 uF ± 5% 600 V 900 V 170 ppm/C 1 MHz 0,0005 1010 \Omega Cukup
Elektrolit aluminium 1 uF - 1 F ± 50% Terpolarisasi 400 V 1500 ppm/C 0,05 MHz 0,05 108 \Omega Cukup
Elektrolit tantalum 1 uF - 2000 uF ± 10% Terpolarisasi 60 V 500 ppm/C 0,1 MHz 0,005 108 \Omega Baik

Jenis kondensator

Berdasarkan kegunaannya kondensator dibagi dalam:
  1. Kondensator tetap (nilai kapasitasnya tetap tidak dapat diubah)
  2. Kondensator elektrolit (Electrolite Condenser = Elco)
  3. Kondensator variabel (nilai kapasitasnya dapat diubah-ubah)

Friday, 26 September 2014

Resistor

Resistor adalah komponen elektronik dua kutub yang didesain untuk mengatur tegangan listrik dan arus listrik, dengan resistansi tertentu (tahanan) dapat memproduksi tegangan listrik di antara kedua kutubnya, nilai tegangan terhadap resistansi berbanding dengan arus yang mengalir, berdasarkan hukum Ohm:
\begin{align}V&=IR\\
I&=\frac{V}{R}\end{align}
Resistor digunakan sebagai bagian dari rangkaian elektronik dan sirkuit elektronik, dan merupakan salah satu komponen yang paling sering digunakan. Resistor dapat dibuat dari bermacam-maca kompon dan film, bahkan kawat resistansi (kawat yang dibuat dari paduan resistivitas tinggi seperti nikel-kromium).
Karakteristik utama dari resistor adalah resistansinya dan daya listrik yang dapat dihantarkan. Karakteristik lain termasuk koefisien suhuderau listrik (noise), dan induktansi.
Resistor dapat diintegrasikan kedalam sirkuit hibrida dan papan sirkuit cetak, bahkan sirkuit terpadu. Ukuran dan letak kaki bergantung pada desain sirkuit, kebutuhan daya resistor harus cukup dan disesuaikan dengan kebutuhan arus rangkaian agar tidak terbakar.

SATUAN
Ohm (simbol: Î©) adalah satuan SI untuk resistansi listrik, diambil dari nama Georg Ohm.
Satuan yang digunakan prefix :
  1. Ohm = Î©
  2. Kilo Ohm = KΩ
  3. Mega Ohm = MΩ

KONTRUKSI
Komposisi karbon
Resistor komposisi karbon terdiri dari sebuah unsur resistif berbentuk tabung dengan kawat atau tutup logam pada kedua ujungnya. Badan resistor dilindungi dengan cat atau plastik. Resistor komposisi karbon lawas mempunyai badan yang tidak terisolasi, kawat penghubung dililitkan disekitar ujung unsur resistif dan kemudian disolder. Resistor yang sudah jadi dicat dengan kode warna sesuai dengan nilai resistansinya.
Unsur resistif dibuat dari campuran serbuk karbon dan bahan isolator (biasanya keramik). Resin digunakan untuk melekatkan campuran. Resistansinya ditentukan oleh perbandingan dari serbuk karbon dengan bahan isolator. Resistor komposisi karbon sering digunakan sebelum tahun 1970-an, tetapi sekarang tidak terlalu populer karena resistor jenis lain mempunyai karakteristik yang lebih baik, seperti toleransi, kemandirian terhadap tegangan (resistor komposisi karbon berubah resistansinya jika dikenai tegangan lebih), dan kemandirian terhadap tekanan/regangan. Selain itu, jika resistor menjadi lembab, panas solder dapat mengakibatkan perubahan resistansi dan resistor jadi rusak.
Walaupun begitu, resistor ini sangat reliabel jika tidak pernah diberikan tegangan lebih ataupun panas lebih.
Resistor ini masih diproduksi, tetapi relatif cukup mahal. Resistansinya berkisar antara beberapa miliohm hingga 22 MOhm.

Film Karbon
Selapis film karbon diendapkan pada selapis substrat isolator, dan potongan memilin dibuat untuk membentuk jalur resistif panjang dan sempit. Dengan mengubah lebar potongan jalur, ditambah dengan resistivitas karbon (antara 9 hingga 40 µΩ-cm) dapat memberikan resistansi yang lebar[1]. Resistor film karbon memberikan rating daya antara 1/6 W hingga 5 W pada 70 °C. Resistansi tersedia antara 1 ohm hingga 10 MOhm. Resistor film karbon dapat bekerja pada suhu di antara -55 °C hingga 155 °C. Ini mempunyai tegangan kerja maksimum 200 hingga 600 v.

Film Logam
Unsur resistif utama dari resistor foil adalah sebuah foil logam paduan khusus setebal beberapa mikrometer.
Resistor foil merupakan resistor dengan presisi dan stabilitas terbaik. Salah satu parameter penting yang memengaruhi stabilitas adalah koefisien temperatur dari resistansi (TCR). TCR dari resistor foil sangat rendah. Resistor foil ultra presisi mempunyai TCR sebesar 0.14ppm/°C, toleransi ±0.005%, stabilitas jangka panjang 25ppm/tahun, 50ppm/3 tahun, stabilitas beban 0.03%/2000 jam, EMF kalor 0.1μvolt/°C, desah -42dB, koefisien tegangan 0.1ppm/V, induktansi 0.08μH, kapasitansi 0.5pF

Penandaan Resistor
Resistor aksial biasanya menggunakan pola pita warna untuk menunjukkan resistansi. Resistor pasang-permukaan ditandas secara numerik jika cukup besar untuk dapat ditandai, biasanya resistor ukuran kecil yang sekarang digunakan terlalu kecil untuk dapat ditandai. Kemasan biasanya cokelat muda, cokelat, biru, atau hijau, walaupun begitu warna lain juga mungkin, seperti merah tua atau abu-abu.
Resistor awal abad ke-20 biasanya tidak diisolasi, dan dicelupkan ke cat untuk menutupi seluruh badan untuk pengkodean warna. Warna kedua diberikan pada salah satu ujung, dan sebuah titik (atau pita) warna di tengah memberikan digit ketiga. Aturannya adalah "badan, ujung, titik" memberikan urutan dua digit resistansi dan pengali desimal. Toleransi dasarnya adalah ±20%. Resistor dengan toleransi yang lebih rapat menggunakan warna perak (±10%) atau emas (±5%) pada ujung lainnya.

Identifikasi Empat Pita

Identifikasi empat pita adalah skema kode warna yang paling sering digunakan. Ini terdiri dari empat pita warna yang dicetak mengelilingi badan resistor. Dua pita pertama merupakan informasi dua digit harga resistansi, pita ketiga merupakan faktor pengali (jumlah nol yang ditambahkan setelah dua digit resistansi) dan pita keempat merupakan toleransi harga resistansi. Kadang-kadang terdapat pita kelima yang menunjukkan koefisien suhu, tetapi ini harus dibedakan dengan sistem lima warna sejati yang menggunakan tiga digit resistansi.
Sebagai contoh, hijau-biru-kuning-merah adalah 56 x 104Ω = 560 kΩ ± 2%. Deskripsi yang lebih mudah adalah: pita pertama, hijau, mempunyai harga 5 dan pita kedua, biru, mempunyai harga 6, dan keduanya dihitung sebagai 56. Pita ketiga,kuning, mempunyai harga 104, yang menambahkan empat nol di belakang 56, sedangkan pita keempat, merah, merupakan kode untuk toleransi ± 2%, memberikan nilai 560.000Ω pada keakuratan ± 2%.

Identifikasi Lima Pita

Identifikasi lima pita digunakan pada resistor presisi (toleransi 1%, 0.5%, 0.25%, 0.1%), untuk memberikan harga resistansi ketiga. Tiga pita pertama menunjukkan harga resistansi, pita keempat adalah pengali, dan yang kelima adalah toleransi. Resistor lima pita dengan pita keempat berwarna emas atau perak kadang-kadang diabaikan, biasanya pada resistor lawas atau penggunaan khusus. Pita keempat adalah toleransi dan yang kelima adalah koefisien suhu

Resistor pasang-permukaan

Resistor pasang-permukaan dicetak dengan harga numerik dengan kode yang mirip dengan kondensator kecil. Resistor toleransi standar ditandai dengan kode tiga digit, dua pertama menunjukkan dua angka pertama resistansi dan angka ketiga menunjukkan pengali (jumlah nol). Contoh:
"334"= 33 × 10.000 ohm = 330 KOhm
"222"= 22 × 100 ohm = 2,2 KOhm
"473"= 47 × 1,000 ohm = 47 KOhm
"105"= 10 × 100,000 ohm = 1 MOhm
Resistansi kurang dari 100 ohm ditulis: 100, 220, 470. Contoh:
"100"= 10 × 1 ohm = 10 ohm
"220"= 22 × 1 ohm = 22 ohm
Kadang-kadang harga-harga tersebut ditulis "10" atau "22" untuk mencegah kebingungan.
Resistansi kurang dari 10 ohm menggunakan 'R' untuk menunjukkan letak titik desimal. Contoh:
"4R7"= 4.7 ohm
"0R22"= 0.22 ohm
"0R01"= 0.01 ohm
Resistor presisi ditandai dengan kode empat digit. Dimana tiga digit pertama menunjukkan harga resistansi dan digit keempat adalah pengali. Contoh:
"1001"= 100 × 10 ohm = 1 kohm
"4992"= 499 × 100 ohm = 49,9 kohm
"1000"= 100 × 1 ohm = 100 ohm
"000" dan "0000" kadang-kadang muncul bebagai harga untuk resistor nol ohm
Resistor pasang-permukaan saat ini biasanya terlalu kecil untuk ditandai.

PenandaTipe Industri

Format: XX YYYZ
  • X: kode tipe
  • Y: nilai resistansi
  • Z: toleransi
Rating Daya pada 70 °C
Kode TipeRating Daya (Watt)Teknik MIL-R-11Teknik MIL-R-39008
BBRC05RCR05
CB¼RC07RCR07
EB½RC20RCR20
GB1RC32RCR32
HB2RC42RCR42
GM3--
HM4--
Kode Toleransi
ToleransiTeknik IndustriTeknik MIL
±5%5J
±20%2M
±10%1K
±2%-G
±1%-F
±0.5%-D
±0.25%-C
±0.1%-B
Rentang suhu operasional membedakan komponen kelas komersil, kelas industri dan kelas militer.
  • Kelas komersil: 0 °C hingga 70 °C
  • Kelas industri: −40 °C hingga 85 °C (seringkali −25 °C hingga 85 °C)
  • Kelas militer: −55 °C hingga 125 °C (seringkali -65 °C hingga 275 °C)
  • Kelas standar: -5 °C hingga 60 °C

Ilmu Pengetahuan, Teknologi dan Kemiskinan

A. Ilmu Pengetahuan
Secara umum, ilmu pengatahuan merupakan suatu pangkal tumpuan yg sistematis, mentoris, rasional/logis, empiris, umum dan akumulatif. Ilmu pengetahuan adalah seluruh usaha sadar untuk menyelidiki, menemukan, dan meningkatkan pengertian atau pemahaman manusia dari berbagai segi kenyataan dalam alam manusia. Segi-segi ini dibatasi agar dihasilkan rumusan-rumusan atau teori-teori yang disepakati dan dapat secara sistematik diuji dengan seperangkat metode yang diakui dalam bidang ilmu tertentu. Ilmu memberikan kepastian dengan membatasi lingkup pandangannya, dan kepastian ilmu-ilmu diperoleh dari keterbatasannya.Tidak semua pengetahuan merupakan ilmu, hanyalah pengetahuan yang tersusun secara sistematis saja yang merupakan ilmu pengetahuan. Jadi ilmu pengetahuan adalah sebuah dasar atau bekal bagi seseorang yang ingin mencapai suatu tujuan yang diharapkannya. Tanpa ilmu pengetahuan, manusia tidak bisa mencapai apa yang diinginkannya.

B. Teknologi
Teknologi adalah keseluruhan sarana untuk menyediakan barang-barang yang diperlukan bagi kelangsungan dan kenyamanan hidup manusia.
Penggunaan teknologi oleh manusia diawali dengan pengubahan sumber daya alam menjadi alat-alat sederhana. Penemuan prasejarah tentang kemampuan mengendalikan api telah menaikkan ketersediaan sumber-sumber pangan, sedangkan penciptaan roda telah membantu manusia dalam beperjalanan dan mengendalikan lingkungan mereka. Perkembangan teknologi terbaru, termasuk di antaranya mesin cetak, telepon, dan Internet, telah memperkecil hambatan fisik terhadap komunikasi dan memungkinkan manusia untuk berinteraksi secara bebas dalam skala global. Tetapi, tidak semua teknologi digunakan untuk tujuan damai; pengembangan senjata penghancur yang semakin hebat telah berlangsung sepanjang sejarah, dari pentungan sampai senjata nuklir. Teknologi telah memengaruhi masyarakat dan sekelilingnya dalam banyak cara. Di banyak kelompok masyarakat, teknologi telah membantu memperbaiki ekonomi (termasuk ekonomi global masa kini) dan telah memungkinkan bertambahnya kaum senggang. Banyak proses teknologi menghasilkan produk sampingan yang tidak dikehendaki, yang disebut pencemar, dan menguras sumber daya alam, merugikan dan merusak Bumi dan lingkungannya. Berbagai macam penerapan teknologi telah memengaruhi nilai suatu masyarakat dan teknologi baru seringkali mencuatkan pertanyaan-pertanyaan etika baru. Sebagai contoh, meluasnya gagasan tentang efisiensi dalam konteks produktivitas manusia, suatu istilah yang pada awalnynya hanya menyangku permesinan, contoh lainnya adalah tantangan norma-norma tradisional.Bahwa keadaan ini membahayakan lingkungan dan mengucilkan manusia; penyokong paham-paham seperti transhumanisme dan tekno-progresivisme memandang proses teknologi yang berkelanjutan sebagai hal yang menguntungkan bagi masyarakat dan kondisi manusia. Tentu saja, paling sedikit hingga saat ini, diyakini bahwa pengembangan teknologi hanya terbatas bagi umat manusia, tetapi kajian-kajian ilmiah terbaru mengisyaratkan bahwa primata lainnya dan komunitas lumba-lumba tertentu telah mengembangkan alat-alat sederhana dan belajar untuk mewariskan pengetahuan mereka kepada keturunan mereka.

C. Kemiskinan

Kemiskinan adalah keadaan dimana terjadi ketidakmampuan untuk memenuhi kebutuhan dasar seperti makanan , pakaian , tempat berlindung, pendidikan, dan kesehatan. Kemiskinan dapat disebabkan oleh kelangkaan alat pemenuh kebutuhan dasar, ataupun sulitnya akses terhadap pendidikan dan pekerjaan. Kemiskinan merupakan masalah global. Sebagian orang memahami istilah ini secara subyektif dan komparatif, sementara yang lainnya melihatnya dari segi moral dan evaluatif, dan yang lainnya lagi memahaminya dari sudut ilmiah yang telah mapan,dll.


Sumber:

http://id.wikipedia.org/